Modification of Rule of Mixtures for Tensile Strength Estimation of Circular GFRP Rebars
نویسندگان
چکیده
The rule of mixtures (ROM) method is often used to estimate the tensile strength of fiber reinforced polymers (FRPs) reinforcing bars (rebars). Generally, the ROM method predicts the FRP rebars’ modulus of elasticity adequately but overestimates their tensile strength. This may result from defects occurred during manufacture that prevent the used materials from exhibiting a sound performance and the shear-lag phenomenon by transmission of external forces through the surface of the rebar having a circular cross section. Due to the latter, there is a difference in fiber breaking points regarding the fibers located on the surface and fibers located at the center, and thus results in differences between the values calculated from the conventional ROM and the experimental result. In this study, for the purpose of resolving the problem, glass FRP (GFRP) rebars were shaped to have a hollow section at the center of their cross sections and were further subject to tensile strength tests. The test results were further placed under regression analysis and a modified ROM within ±5% accuracy compared to the experimental value was proposed for GFRP rebars with 13, 16, and 19 mm diameters.
منابع مشابه
Evaluating the Semi-Circular Bending Test for HMA Mixtures
Semi-Circular Bending (SCB) Test is a fast and accurate three-point bending test, which was originally used in rock mechanics. SCB test is going to be an accepted test method for asphalt concrete pavements. Different asphalt-mixture property-values such as tensile strength, stress intensity factor and fatigue can be obtained by this test. In this study, static and dynamic tests including SCB te...
متن کاملWorkshop Presentation Infrastructure Applications of Frp Composites Behaviour of High Strength Concrete Columns Reinforced with Gfrp Bars and Helices under Different Loading Conditions
The use of Glass Fibre Reinforced Polymer (GFRP) bars is considered an alternative option in reinforcing concrete structures instead of conventional steel bars especially in harsh severe environments, due to their mechanical properties and physical characteristics. GFRP bars offer many advantages over steel counterparts such as corrosion resistance, high tensile strength, low weight and electro...
متن کاملNumerical investigation of GFRP bars contribution on performance of concrete structural elements
In this study, twenty glass fiber reinforced polymer (GFRP) reinforced concrete specimens were modelled using finite element method to predict the effect of GFRP compressive bars on the flexural strength and ductility of GFRP reinforced concrete beams. Also, the contribution of GFRP longitudinal rebars to the load-carrying capacity of reinforced concrete columns is determined. The concrete elas...
متن کاملInvestigation of Mechanical Properties Prediction of Synthesized Nylon-66/Nano-Calcium Carbonate Composites
In this research, the influence of adding micro- and nano- sized calcium carbonate powders to nylon-66 was investigated. Mechanical properties of micro and nano- composites, including tensile strength, elongation, and Young’s modulus, before and after ageing, were determined and analyzed. For this purpose, micro- and nano-sized CaCO3 particles were used as fillers to prepare micro-composites (c...
متن کاملTime-Variant Strength Capacity Model for GFRP Bars Embedded in Concrete
Glass fiber-reinforced polymer (GFRP) concrete reinforcement exhibits high strength, is lightweight, can decrease time of construction, and is corrosion resistant. However, research has shown that chemical reactions deteriorate the GFRP reinforcing bars over time, resulting in a reduced tensile capacity. This paper develops a time-variant probabilistic model to predict the tensile capacity of G...
متن کامل